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1. THE PLATEAU PROBLEM (some attempts)

Plateau was interested in soap films. The simplest statement of
Plateau’s problem: describe the soap films £ C R® bounded by a set T’
(for instance a smooth curve). Existence and regularity?

Apparently, a soap film is composed of two layers of some molecules
with a water-attracting head and a water-repelling tail, which align
themselves head to head; the width of the film is roughly equal to the
length of two molecules.

The general model is to minimize the area of a surface E spanned
by I', but different notions of “surface” and “spanned” exist. We shall
mention some.

A soap bubble is slightly different: due to different pressures on
both sides, it only “almost-minimizes” the area. In the smooth case, it
has constant (instead of vanishing) mean curvature.












l.a. Douglas’ solution of Plateau’s problem (1931)

Take a smoth curve I', and look for £ = f(D), where D is the unit
disk. Try to minimize the area of the image [, J;(x)dx.

Difficulty: too many possible parameterizations to hope for com-
pactness.

Bright idea: try to take f to be harmonic in D, and choose f on
9D so that [ r Jy(x)dr is minimal. Luckily, this amounts to solving a
variational problem for Jiap which is much simpler: minimize
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But the method does not see whether f(D) crosses itself.




1.b. Currents and the Plateau problem

We start with the most celebrated and successful model, provided
by Currents. Work by Federer, Fleming, De Giorgi, and others.

A d-dimensional current is a continuous linear form on the space
of smooth d-forms. Almost the same as a form-valued distribution.

Main example: if S is smooth, oriented surface of dimension d, the
current S’ of integration on S is defined by (S’,w) = [,w. But we
want a much larger class with compactness properties.

Other useful example, the rectifiable current 7' defined on a d-
dimensional rectifiable set E such that H(E) < +oo, with a mea-
surable orientation 7, and an integer-valued multiplicity m:

(1) (T, w) = /E m(z) w(x) - 7(x) dHY(z).

Here H? = d-dimensional Hausdorff measure ~ surface measure.



Recall (1) : (T, w) /m c7(2) dHY ().

We omit the definition of w(x) ) when 7 is a measurable orientation
(or unit d-vector), but it Would be the same on a smooth manifold.

The boundary 971" of a d-dimensional current 7' is defined by

(2) (0T, w) = (T,dw) for every (d — 1)-form w.

|d is the exterior derivative.] When S is a smooth oriented surface with
boundary I', Green says that 95" = I'". Notice: 90 = 0 because dd = 0.

Boundary condition for currents: take a (d — 1)-dimensional current
I', with O0I' = 0, and minimize “area” among d-dimensional currents 7'
such that 97 =T.



Works well and great success for GMT : minimize Mass(7'), which
is the operator norm of 7', where we put a L°°-norm on forms.

Federer, De Giorgi, etc., get existence and regularity of normal
currents 7' that solve 9T = I' and minimize Mass(T).

Very good, but not very physical (for instance, T has no interior
singularity in low dimensions).

More physical option: minimize Mass(T), the H%measure of the
support of 7.

But then, no general existence result, even when n = 3, d = 2,
and I' is a smooth curve. The difficulty is that we have no bounds on
the masses in a minimizing sequence, so the good compactness theorem
does not apply.

Interesting partial results by R. Hardt and T. De Pauw.



Difference : when 1’ is a rectifiable current given by

(1) (T, w) = Em(%’) w(x) - 7(x) dH (x),
(3) Mass(T') = ; im(z)| dH (x)
and
(4) Size(T) = H*({x € E; m(z) # 0})

Simple pictures when d =1 and d = 2.

Definition : A normal current is a rectifiable current 7' such that 97 is
rectifiable too. [Did not disturb here because we know 07













1.c. Directly with sets and homology

Another difficulty with currents: some soap films are not orientable
(Mobius bands), and the problem 07T = I' does not always fit.
Various ad hoc solutions to this exist, but no general scheme.

Return to d = 2, n = 3, and F is a “surface” spanned by a curve I'.
We want to minimize H*(E), but what is “spanned”?

For Reifenberg (1960), F is a compact set that contains I', and the
boundary condition is in terms of Cech homology on some commutative
group G. We require the inclusion 2 : I' — E to induce a trivial

homomorphism from H;(I', G) to H{(FE,G). Then we minimize H?*(E).

Reifenberg proved the existence of minimizers when G = Z, or R/Z.
Beautiful proof with minimizing sequences and haircuts.

De Pauw obtained the 2-dimensional case when G' = Z (with currents).
The equivalence with the size minimizing problem is not clear, but the
infimum is the same.



1.d. Sliding Almgren minimizers

We propose a third definition, where we minimize H*(E) among all
compact sets F/ obtained by deformation of an initial candidate Fy with
a sliding boundary condition. |[Think about a rubber shower curtain. |

A deformation of Ey with sliding boundary condition is a set
E = p1(F), where ¢; : Eg — R>, 0 <t < 1, is a one-parameter family
of functions such that:

(7) (z,t) — @ () is continuous: Ey x [0,1] — R?,
(8) wo(x) = x for x € Fy,

(9) oi(x) € I when x € T,

(10) @1 18 Lipschitz.



|[We require (10) for safety, but no bound on the Lipschitz constant is
attached. We may also drop (10).]

Possible advantages of this notion:

- No need to orient E, or choose a group.

- Could be more flexible (different choices of Ey would lead to different
solutions).

Bad news: no existence result is know yet even when d = 2, n = 3,
and the boundary I' is a curve. Also, we do not account for unrealistic
deformations that would extend the film too far: some real films could
be deformed into a point, but with a long homotopy.

All these definitions work in a much wider context (but then even less
is known). Other ones are possible. Separation conditions, constraints
on the homology of the complement are easier.

We leave the Plateau problem with the conclusion that it would
be nice to solve it in simple various context.
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Pictures from K. Brakke’s site






2. INTERIOR REGULARITY : J. TAYLOR’S THEOREM

We now focus on regularity properties of potential solutions away
from the boundary. J. Taylor’s theorem will be the best example.

First we’ll define local minimal and almost-minimal sets.

We shall use Almgren’s definition, which gives a good description
of soap films and bubbles, of a d-dimensional almost-minimal set.

We localize to an open set U C R". For instance, U could be
R™ \ T', where I' is a boundary.

We use a small gauge function h : Ry — R, , that measures how
close to minimal. For instance, h(r) = Cr® for some a > 0; take h = 0
for locally minimal sets.

We consider sets £ C U, of dimension d, and even such that
HYE N B) < +oo for every compact ball B C U.
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Let B be a compact ball in U. A competitor for £ in B is a set
F = ¢(F), where ¢ : U — U is Lipschitz (but no bounds required),
and

(1) o(y) =y fory e U\ B, and ¢(B) C B.

An almost minimal set of dimension d in U, with gauge function

h, is a closed set E, with HY(E N B) < +oo for closed balls B C U,
such that

(2) HYENB) <HYFNB)+rth(r)

whenever B is a closed ball, B C U, r is its radius, and F'is a competitor
for £ in B.

Comments. 1. Minor variant of Almgren’s definition. Others exist.
2. F'is obtained by deforming F inside B, because F' = ¢1(F), where

pi(y) =to(y) + (1 —t)y.
3. Note that ¢ is not required to be injective. Pinching is allowed.
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Examples of Minimal cones
That is, cones that are also minimal sets, i.e., such that
HYENB) < HY¢(E)N B)
for p : R — R™ Lipschitz s.t. ¢(x) = x for x € R" \ B and ¢(B) C B.

e d=1: A line, a Y (three half lines in a plane, with 120° angles).

e d = 1: But not two lines (even perpendicular). Exercise: the union of
two crossing segments is not (the support of) a mass or size minimizer.

e d=2: A plane, a Y (product of Y by a perpendicular line = three
half planes that make 120° angles).

e d =2 : Less trivial: in R?, the (closed positive) cone T of dimension
2 over the union of the edges of a regular tetrahedron centered at the
origin. Six faces that meet by sets of three along four half lines (the
spine). [Morgan-Lawlor with calibrations.]

Full list in R?, known by Lamarle, Heppes, Taylor.
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Reduction (= cleaning)

For £ C R” closed, with locally finite ¢ measure, denote by E*
the closed support of E. That is,

(3) E*={x € E;H (ENB(x,r)) >0 for all » > 0}.
Say that F is reduced when £ = E™.

If £ is almost minimal, then E* is almost minimal, with the same
gauge h, because HY(E\ E*) = 0. So it is safe to focus on reduced sets.

This simplifies things; otherwise we would get ugly statements

because if E is almost minimal, then £ U Z is also almost minimal for
any closed Z such that H¢(Z) = 0.

We should keep in mind that E* \ E can play a role in some
topological problems. But from now on, all our sets will be reduced.
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J. Taylor’s theorem

Theorem (JT, 1976). Let E be a reduced local almost minimal set of
dimension 2 in some open set U C R?, with gauge function h(r) = Cr®
(a« > 0). Then for each x € E, there is a ball B(x,r) inside which F is
the image of a minimal cone by a C!-diffeomorphism of R?.
Comments

e The cone is a plane, a Y, or a T, as in the list above. This also means
that near B(x, ), E is composed of C'! faces, which meet along C'! arcs
with 120° angles and the same combinatorics as in a minimal cone.

e The singularies above occur in real soap films.

e Alas, the result does not give a concrete way to estimate r.
e Some (Dini) condition on A is needed, but A(r) = Cr® is not optimal.

e You can get more regularity than this, especially if i is very small or
vanishing and in the regions where E is C''-diffeomorphic to a plane.

15









Some ingredients for the proof.

e (Almost) monotonicity of the density 0, (r) = r~4HY(E N B(x, 7))
(standard for minimal sets, obtained by comparing with a cone).

e Stability under limits (which comes from other regularity properties).
And then the blow-up limits of £ are minimal cones.

e More precise arguments, to show that at small scales, E stay close to
minimal cones, with uniform estimates. Includes a topological lemma
of existence of points of type Y.

e A variant of Reifenberg’s theorem on parameterizations, which gives
the local Bi-Holder equivalence.

e For the C'' estimates, much more precise comparizons with minimal
cones; epiperimetry.

Knowing the list of all minimal cones is a very important first step
anyway (because of the blow-up limits).
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3. MINIMAL CONES AND SETS IN HIGHER DIMENSIONS

Here this will just mean, an analogue of J. Taylor’s theorem for
2-dimensional minimal sets in R":

Theorem [D.]. Let E be a reduced local almost minimal set of di-
mension 2 in some open set U C R", with gauge function h(r) = Cr®

(a > 0). Then for each x € E, there is a ball B(x,r) where F is the
image of a minimal cone by a bi-Holder diffeomorphism of R".

Good, but what is the list of minimal cones?
This would also help for proving the C''-equivalence.

We have the tfollowing first description of 2-dimensional minimal
cones F in R*. Set K = EN0dB(0,1). Then K is a finite union of
circles and arcs of great circles; the arcs are not too short and meet at
their ends by sets of 3 and with 120° angles; the circles stay at some
positive distance from the rest. |[First proof by F. Morgan.|
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Examples :

In R?, P comes from a circle; Y from 3 half circles that meet at the
poles, T from 6 shorter arcs. The other nets on S? do not give minimal
cones. See pictures from Ken Brakke’s home

http:/ /www.susqu.edu/brakke/

In R*, two new potential examples :

e The union P; U P, of two transverse 2-planes.
Known to be minimal when they are almost orthogonal | XiangYu Liang];
Conjectural necessary and sufficient condition for minimality [Morgan].

e Product Y x Y of two one-dimensional sets Y (9 faces). Not even
known to be minimal.

e Is there any other one?

For 3-dimensional minimal sets and cones in R?, little is known. Smooth
description of K = F N 9dB(0,1) when E is a minimal cone [Luul.
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4. BOUNDARY REGULARITY?

Idea: control the behaviour of £ near boundary pieces; hope this
could also lead to existence results for Plateau.

Setting: Now we are given a collection of (closed) boundary pieces
I';, 7 € J. A sliding competitor for I is a set F' = ¢;(FE), where the
vy, 0 <t <1, are such that

(1) (z,t) — ¢, () is continuous: E x [0,1] — R”,
(2) wo(x) = x for x € Fy,

(3) oi(x) €l'; when j € Jand z € T},

(4) ¢1 1s Lipschitz.

Note : I'g could be the domain where we want to work.
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The closed set I is almost minimal with sliding boundaries I'; it

(5) HYENB) <HYENB)+r*h(r)

when B is a ball of radius » and F' is a sliding competitor in B, 1.e.,
F = p1(F) is as above, with ¢;(x) = x for x € R" \ B and ¢;(B) C B.
Question: local regularity of these sets, say, with nice L.

So far: Ahlfors regularity of £ and, under the weird assumption that
(%) each I'; either contains E or is at most d-dimensional,
uniform rectifiability of E, stability under limits.

Would be great: - some analogue of monotonicity of density, including
for balls centered close to, but not on, the I';;

- a list of sliding minimal cones, and then

- an approximation result like J. Taylor’s;

- getting rid of (%): finding a better proof of Uniform Rectifiability.
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Comments :

Seems to be a new question?

Applies to other categories of minimizers.

d =2 and n = 3,4 would already be nice.

Example : is the cone over the vertices of a cube minimal, with a sliding

boundary equal to the great diagonal?

Other topics:

Simpler variants of the Plateau problem:

- inside a manifold with complicated topology but no boundary,
- separation conditions,

- homology conditions on the complement.
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